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This paper investigates the Bohr phenomenon for the class of analytic functions from the unit disk into the
punctured unit disk. The Bohr radius is shown to be 1/3.
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1 Introduction

Let U := {z : |z| < 1} denote the unit disk and H(U) be the class of analytic functions defined in U . In 1914,
Bohr [14] proved that for every analytic self-map f (z) = ∑∞

n=0 anzn of the unit disk U , then

∞∑
n=0

|anzn| ≤ 1 (1.1)

in the disk 0 ≤ |z| ≤ 1/6. The value 1/6 was further improved independently by Riesz, Schur and Wiener to 1/3,

which is the largest |z| could be for inequality (1.1) to hold. The number 1/3 is now known as the Bohr radius for
the class of all analytic self-maps of the unit disk U . Other proofs can also be found in [24], [27], [28].

Greater interest is given to the Bohr theorem after Dixon [19] used it to construct a non-unital Banach algebra,
which is not an operator algebra, but yet satisfy the non-unital von Neumann’s inequality. Generalizations of
Bohr theorem were studied by various authors: Aizenberg [2], [3] considered the domain of unit ball and unit
hypercone; Popescu, Paulsen and Singh [23], [25], [26] established the operator-theoretic Bohr radius; Aizenberg,
Aytuna and Djakov [5], [7] described the Bohr property of bases for holomorphic functions; Bénéteau, Dahlner
and Khavinson [10] studied the Bohr phenomenon for functions in Hardy spaces; and Ali, Abdulhadi and Ng
[6] extended the concept of the Bohr radius to the class of starlike logharmonic mappings. The interconnectivity
between Banach theory and Bohr theorem was investigated in [11], [15], [16].

The generalization of Bohr theorem to higher dimensions was pioneered by Dineen and Timoney [18] in
the setting of the unit polydisk, which led to a partial solution of the problem. Several years later, Boas and
Khavinson [13] provided the estimate for the n-dimensional Bohr radius. Recently, Defant et al. [17] obtained
the optimal asymptotic estimate for this radius by using the fact that the Bohnenblust–Hille inequality is indeed
hypercontractive. The exact asymptotic behaviour of the radius was obtained by Bayart, Pellegrino and Seoane-
Sepúlveda [8].

Bohr inequality (1.1) can also be written as

d

( ∞∑
n=0

∣∣anzn
∣∣ , |a0|

)
=

∞∑
n=1

∣∣anzn
∣∣ ≤ d( f (0), ∂U),

where d is the Euclidean distance, and ∂U is the boundary of U. This form makes evident the notion of the Bohr
phenomenon for analytic functions mapping the unit disk into a given domain. Let S(�) be the class consisting
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of all analytic (or harmonic) functions f (z) = ∑∞
n=0 anzn from U into a domain �. The Bohr radius for � is the

largest number r� ∈ (0, 1) satisfying

d

( ∞∑
n=0

∣∣anzn
∣∣ , |a0|

)
=

∞∑
n=1

∣∣anzn
∣∣ ≤ d( f (0), ∂�)

for all f ∈ S(�) and |z| < r�.

If � is convex, Aizenberg [4] proved that the sharp Bohr radius is r� = 1/3. This result includes the classical
case � = U . When � is any proper simply connected domain, Abu-Muhanna [1] showed that the Bohr radius is
3 − 2

√
2 ∼= 0.17157. In two recent papers [21], [22], the Bohr inequality was investigated when � is the domain

exterior to a compact convex set, and when � is a concave-wedge domain.
The aim of this paper is to investigate the Bohr phenomenon for the class of analytic functions mapping U

into the punctured unit disk. The sharp Bohr radius of 1/3 for the punctured unit disk is obtained in Theorem
2.6. A similar Bohr-type inequality is also obtained in Theorem 2.10. Additionally, Theorem 2.11 yields the Bohr
inequality involving the hyperbolic metric.

2 Analytic functions mapping into the punctured unit disk

Denote by U0 = U\{0} the unit disk punctured at the origin, and Ur the disk {z : |z| ≤ r}. Further, denote by H
the class of all analytic self-maps of U, and

H0 := { f ∈ H : f (U) ⊆ U0}.

Since f (z) 
= 0 in U whenever f (z) = ∑∞
n=0 anzn ∈ H0, evidently | a0| > 0.

For f (z) = ∑∞
n=0 anzn ∈ H(U), the majorant function [12] is given by

M f (z) :=
∞∑

n=0

|an|zn.

Thus the classical Bohr theorem (1.1) takes the form

M f (|z|) ≤ 1

for |z| ≤ 1/3 and f ∈ H. Since |M f (z)| ≤ M f (|z|), Bohr theorem can be written as

M f (U 1/3) ⊆ U

for f ∈ H, or in distance form,

d (M f (|z|), | f (0)|) ≤ d( f (0), ∂U)

for |z| ≤ 1/3 and f ∈ H.

The following theorem shows that the Bohr radius 1/3 also holds for the subclass H0 of H.

Theorem 2.1 If f ∈ H0, then

M f (U 1/3) ⊆ U, (2.1)

or equivalently,

d (M f (|z|), | f (0)|) ≤ d( f (0), ∂U) (2.2)

for |z| ≤ 1/3. The radius 1/3 is best.
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P r o o f . Since f ∈ H0 ⊂ H, the inclusion (2.1) follows immediately from the classical Bohr theorem. To
show the value 1/3 is best, consider the function

ft(z) = exp

(
−t

1 + z

1 − z

)

= 1

et
+ 1

et

∞∑
n=1

[
n∑

m=1

(−2t)m

m!

(
n − 1

m − 1

)]
zn, t > 0.

(2.3)

Note that ∣∣∣∣∣
n∑

m=1

(−2t)m

m!

(
n − 1

m − 1

)∣∣∣∣∣ ≥ −
n∑

m=1

(−2t)m

m!

(
n − 1

m − 1

)
,

and so

M ft(|z|) ≥ 1

et
− 1

et

∞∑
n=1

[
n∑

m=1

(−2t)m

m!

(
n − 1

m − 1

)]
|z|n

= 2

et
− ft(|z|). (2.4)

Let a0 = ft(0). Since t = − log a0 = − log | a0|, ft can be written as

ft(z) = exp

(
log | a0|1 + z

1 − z

)
= | a0| exp

(
log | a0| 2z

1 − z

)

= | a0|| a0| 2z
1−z . (2.5)

Hence, by letting |z| = r , (2.4) and (2.5) imply

M ft(|z|) ≥ 2| a0| − ft(|z|) = | a0|(2 − | a0| 2r
1−r ) > 1

as a0 → 1 and r > 1/3. Indeed, for each r0 > 1/3, there exists an ε0 > 0 satisfying

1 <
− log(1 − ε0)
log(1 + ε0)

<
2r0

1 − r0
.

Equivalently,

1 − ε0 > (1 + ε0)− 2r
1−r .

With | a0| = 1/(1 + ε0), then

| a0|
(

2 − | a0| 2r
1−r

)
> 1,

which gives M ft(r0) > 1. Also note that

| a0|
(

2 − | a0| 2r
1−r

)
≤ 2| a0| − | a0|2 ≤ 1

for | a0| < 1 and 0 ≤ r ≤ 1/3. Hence the radius 1/3 is best. �

Since f (U) ⊆ U0, the Bohr theorem for the class H0 suggests replacing the domain U in both (2.1) and (2.2)
by U0. To this end, we first examine the case for functions ft ∈ H0 given by (2.3). For such functions ft , Koepf
and Schmersau [20, p. 248] obtained the estimate∣∣∣∣∣ 1

et

n∑
m=1

(−2t)m

m!

(
n − 1

m − 1

)∣∣∣∣∣ <

√
2t

n
, t ∈ (0, 2n), n > 0. (2.6)
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Also, it would soon become evident that the number

α0 := 1

3e
− 1

9
√

6
≈ 0.07727

plays a prominent role in the sequel.

Lemma 2.2 Let ft be given by (2.3) with 0 < t ≤ 1. Then M ft(U 1/3) ⊆ U0 and∣∣∣∣M ft(z) − 1

et

∣∣∣∣ <
1

et
− α0, z ∈ U 1/3.

In particular,

M ft(|z|) − 1

et
<

1

et
− α0, |z| ≤ 1/3.

P r o o f . Write

ft(z) = exp

(
−t

1 + z

1 − z

)
= exp

(
−t − 2t

∞∑
n=1

zn

)

= 1

et
+

∞∑
m=1

1

et m!

(
−2t

∞∑
n=1

zn

)m

= 1

et
− 2t

et
z − 2t(1 − t)

et
z2 + a3z3 + · · · .

Thus for |z| ≤ 1/3, (2.6) gives∣∣∣∣M ft(z) − 1

et

∣∣∣∣ <
2t

3et
+ 2t(1 − t)

9et
+

∞∑
n=3

√
2t

3n
√

n

<
2t

3et
+ 2t(1 − t)

9et
+

√
2t

3

∞∑
n=3

1

3n

= 2t

3et
+ 2t(1 − t)

9et
+ 1

9

√
t

6

= 1

et
− y1(t) <

1

et
− α0,

where

y1(t) := 1

et
− 2t

3et
− 2t(1 − t)

9et
− 1

9

√
t

6

is strictly decreasing in [0, 1]. Thus y1(t) > α0 in [0, 1]. It follows that |M ft(z)| > 0, which along with Theorem
2.1 give M ft(U 1/3) ⊆ U0. �

Remark 2.3 Equation y1 in Lemma 2.2 has a root at t0 ≈ 1.35299, and indeed y1 is strictly decreasing in
[0, t0]. We shall however be only interested in the interval t ∈ (0, 1].

Lemma 2.4 Let fa,N ∈ H0 be of the form

fa,N (z) = exp

(
−

N∑
k=1

tka
1 + xk z

1 − xk z

)
, z ∈ U, (2.7)

with 0 < a ≤ 1, |xk | = 1 for each k, and tk > 0 satisfies
∑N

k=1tk = 1. Then M fa,N (U 1/3) ⊆ U0 and∣∣∣∣M fa,N (z) − 1

ea

∣∣∣∣ <
1

ea
− α0, z ∈ U 1/3.
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P r o o f . Since fa,N is analytic in U , it can be expressed in its Taylor series

exp

(
−

N∑
k=1

tka
1 + xk z

1 − xk z

)
= exp

(
−a − 2a

∞∑
n=1

(
N∑

k=1

tk xn
k

)
zn

)

= 1

ea
exp

(
−2a

∞∑
n=1

(
N∑

k=1

tk xn
k

)
zn

)

= 1

ea
+ 1

ea

∞∑
m=1

(−2a)m

m!

( ∞∑
n=1

(
N∑

k=1

tk xn
k

)
zn

)m

= 1

ea
+ 1

ea

∞∑
m=1

(−2a)m

m!

∞∑
n=m

dnzn

= 1

ea
+ 1

ea

∞∑
m=1

∞∑
n=m

(−2a)m

m!
dnzn

= 1

ea
+ 1

ea

∞∑
n=1

n∑
m=1

(−2a)m

m!
dnzn,

where

dn =
∑

s1+···+sm=n

(
N∑

k=1

tk xs1
k

)
· · ·

(
N∑

k=1

tk xsm
k

)

and the outer sum is taken over all m-tuples (s1, . . . , sm) of postive integers satisfying s1 + · · · + sm = n. Note
that

|dn| ≤
∑

s1+···+sm=n

(
N∑

k=1

tk

)
· · ·

(
N∑

k=1

tk

)
=

∑
s1+···+sm=n

1 =
(

n − 1

m − 1

)
.

Next let

fa(z) = exp

(
−a

1 + z

1 − z

)
= 1

ea
+ 1

ea

∞∑
n=1

n∑
m=1

(−2a)m

m!

(
n − 1

m − 1

)
zn.

Thus for |z| ≤ 1/3,∣∣∣∣M fa,N (z) − 1

ea

∣∣∣∣ ≤ 1

ea

∞∑
n=1

∣∣∣∣∣
n∑

m=1

(−2a)m

m!

∣∣∣∣∣ |dn||z|n

≤ M fa(|z|) − 1

ea
<

1

ea
− α0,

where the last inequality follows from Lemma 2.2. Hence
∣∣M fa,N (z)

∣∣ > 0 on U 1/3, which together with Theorem
2.1 yields M fa,N (U 1/3) ⊆ U0. �

Theorem 2.5 Let f ∈ H0 with 1/e ≤ | f (0)| < 1. Then M f (U 1/3) ⊆ U0 and∣∣M f (z) − M f (0)
∣∣ < M f (0), z ∈ U 1/3.

In particular,

M f (|z|) − | f (0)| < | f (0)|, |z| ≤ 1/3.

P r o o f . It suffices to consider the case f (0) > 0. Since 0 < | f (z)| < 1, then −Re log f (z) > 0 in U . Thus,

log f (z) = log f (0)
∫

|x |=1

1 + xz

1 − xz
dμ(x),
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or

f (z) = exp

(
−

∫
|x |=1

a
1 + xz

1 − xz
dμ(x)

)

for some probability measure μ on ∂U, and 0 < a = − log f (0) ≤ 1. If f has the form (2.7), then the results
evidently follow from Lemma 2.4.

Consider the compact disk Uρ with 1/3 < ρ < 1. If f does not has the form (2.7), then there exists a sequence
of functions {gn} of the form (2.7) satisfying gn(0) = f (0) for each n, and gn converges uniformly to f on Uρ .
Thus for a given ε > 0, there exists a positive integer N such that

|gn(z) − f (z)| <
ε

M
for all z ∈ U ρ,

and n > N , where M = maxz∈U 1/3
{|z|/(ρ − |z|)}. The Cauchy Integral formula yields

∣∣∣g(k)
n (0) − f (k)(0)

∣∣∣ =
∣∣∣∣∣ k!

2π i

∮
∂Uρ

gn(ζ ) − f (ζ )
ζ k+1

dζ

∣∣∣∣∣
≤ k!

2π

∫ 2π

0

|gn(ζ (t)) − f (ζ (t))|
ρk

dt <
εk!

Mρk
.

Hence, for all |z| ≤ 1/3 and n > N ,

|Mgn(z) − M f (z)| ≤ |M(gn − f )(|z|)|

=
∞∑

k=1

∣∣∣∣∣g(k)
n (0) − f (k)(0)

k!

∣∣∣∣∣ |z|k

<
ε

M

∞∑
k=1

( |z|
ρ

)k

= ε|z|
M(ρ − |z|) ≤ ε,

implying Mgn → M f uniformly on U 1/3.
Now, for any ε > 0, there exists a corresponding positive integer N such that

sup
z∈U 1/3

|Mgn(z) − M f (z)| < ε for all n > N .

Lemma 2.4 and the inequality above imply

sup
z∈U 1/3

|M f (z) − f (0)| ≤ sup
z∈U 1/3

|Mgn(z) − f (0)| + sup
z∈U 1/3

|Mgn(z) − M f (z)|

< f (0) − α0 + ε.

Hence |M f (z) − f (0)| ≤ f (0) − α0 < f (0) for all z ∈ U 1/3, and so
∣∣M f (z)

∣∣ > 0 on U 1/3. Further Theorem
2.1 gives M f (U 1/3) ⊆ U0. �

The following result yields the Bohr radius for the class { f ∈ H0 : 1/e ≤ | f (0)| < 1}.
Theorem 2.6 If f ∈ H0 with 1/e ≤ | f (0)| < 1, then

M f (U 1/3) ⊆ U0 (2.8)

and

d(M f (|z|), | f (0)|) ≤ d( f (0), ∂U0) (2.9)

for |z| ≤ 1/3. The radius 1/3 is best possible.

P r o o f . The inclusion (2.8) follows from Theorem 2.5. Now, assume that r = |z| ≤ 1/3. The inequality in
Theorem 2.5 implies

d(M f (r), | f (0)|) = M f (r) − | f (0)| < | f (0)|.
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On the other hand, since f ∈ H0, Theorem 2.1 gives M f (r) < 1 and so

d(M f (r), | f (0)|) = M f (r) − | f (0)| < 1 − | f (0)|.
Then (2.9) follows from the two inequalities above since

d( f (0), ∂U0) = min{| f (0)|, 1 − | f (0)|}.
That the value 1/3 is best follows from the proof of Theorem 2.1. �

Remark 2.7 Relations (2.1) and (2.2) in Theorem 2.1 are equivalent. However (2.8) and (2.9) in Theorem 2.6
are not since d( f (0), ∂U0) = | f (0)| 
= 1 − | f (0)| for | f (0)| < 1/2.

Next, we look at removing the constraint on | f (0)| in Theorem 2.6. Denote by [ · ] the least integer function,
that is, [a] is the smallest integer greater than or equal to a.

Lemma 2.8 Suppose a > 0, and

fa,N (z) = exp

(
−

N∑
k=1

tka
1 + xk z

1 − xk z

)
∈ H0, (2.10)

where |xk | = 1 for each k, and tk > 0 satisfies
∑N

k=1 tk = 1. Then

(M fa,N (|z|))1/[a] − 1

ea/[a]
<

1

ea/[a]
− α0, |z| ≤ 1/3.

P r o o f . If a ∈ (0, 1], then [a] = 1 and the result follows from Lemma 2.4. Assume now that a > 1. It follows
from the proof of Lemma 2.4 that∣∣∣∣M fa,N (z) − 1

ea

∣∣∣∣ ≤ M fa(|z|) − 1

ea
,

which gives ∣∣M fa,N (z)
∣∣ ≤ M fa(|z|). (2.11)

Since M( f g)(|z|) ≤ M( f )(|z|)M(g)(|z|), Lemma 2.2 yields

M fa(|z|) = M f [a]
a/[a](|z|) ≤ (M fa/[a](|z|)

)[a]
<

(
2

ea/[a]
− α0

)[a]

(2.12)

for |z| ≤ 1/3. Thus

(M fa,N (|z|))1/[a] − 1

ea/[a]
<

1

ea/[a]
− α0. �

Theorem 2.9 Let f ∈ H0 and a = − log | f (0)|. Then

(M f (|z|))1/[a] − | f (0)|1/[a] < | f (0)|1/[a], |z| ≤ 1/3.

P r o o f . It suffices to consider the case f (0) > 0. Let a = − log f (0). Then

f (z) = exp

(
−

∫
|x |=1

a
1 + xz

1 − xz
dμ(x)

)

for some probability measure μ on ∂U . If f has the form (2.10), then the result follows from Lemma 2.8.
Consider the compact disk Uρ with 1/3 < ρ < 1. If f does not has the form (2.10), then there exists a sequence

of functions {gn} of the form (2.10) satisfying gn(0) = f (0) for each n, and gn converges uniformly to f on
U ρ . Applying the same argument as in the proof of Theorem 2.5, it can be shown that Mgn converges to M f
uniformly on U 1/3.

Thus, for any ε > 0, there exists a corresponding positive integer N such that for all n ≥ N and z ∈ U 1/3,

|Mgn(z) − M f (z)| < ε,
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and thus

|M f (z)| < |Mgn(z)| + ε.

Further (2.11) and (2.12) imply

|M f (z)| <
(

2 ( f (0))1/[a] − α0

)[a]
+ ε.

Since ε is arbitrary, it follows that

|M f (z)| ≤
(

2 ( f (0))1/[a] − α0

)[a]
<

(
2 ( f (0))1/[a]

)[a]
,

and consequently

(M f (|z|))1/[a] − ( f (0))1/[a]
< ( f (0))1/[a]

for |z| ≤ 1/3. �

Theorem 2.10 If f ∈ H0 and a = − log | f (0)|, then

d
(
(M f (|z|))1/[a]

,
∣∣ f (0)

∣∣1/[a]
)

≤ d
(
( f (0))1/[a]

, ∂U0

)
for |z| ≤ 1/3. The radius 1/3 is best possible.

P r o o f . The proof is omitted as it can be argued likewise in proving (2.9) by applying Theorem 2.9.
To show the value 1/3 is best, consider the function ft ∈ H0 given by (2.3) with 1/2 ≤ ft/[t ](0) < 1. Then it

suffices to show that

d
(
(M ft(|z|))1/[t ]

, ( ft(0))1/[t ]
)

> d
(
( ft(0))1/[t ]

, ∂U0

)
, |z| > 1/3. (2.13)

Since

d
(
(M ft(|z|))1/[t ]

, ( ft(0))1/[t ]
)

= (M ft(|z|))1/[t ] − ( ft(0))1/[t ]
,

and

d
(
( ft(0))1/[t ]

, ∂U0

)
= 1 − ( ft(0))1/[t ]

,

it follows that (2.13) can be reduced to

(M ft(|z|))1/[t ]
> 1 or M ft(|z|) > 1, |z| > 1/3.

Indeed, the inequality holds as is shown in the proof of Theorem 2.1. �

We end this section by presenting a Bohr-type inequality in hyperbolic distance on U0. The density of the
metric [9] on U0 is given by

λU0(z) = 1

|z| log(1/|z|) .

If dU0(a, b) denote the hyperbolic distance between a and b, then

dU0(a, b) =
∫ b

a

|dz|
|z| log(1/|z|) = log

∣∣∣∣ log 1/|b|
log 1/|a|

∣∣∣∣ .
Theorem 2.11 Let f ∈ H0 with 1/e ≤ | f (0)| < 1. Then

dU0(M f (|z|), | f (0)|) ≤ log
1 + 3|z|
1 − 3|z|

for |z| < 1/3. In particular,

www.mn-journal.com C© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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(a) when | z| < 1/9,

dU0(M f (|z|), | f (0)|) < log 2 = 2

λU0(
1
2 )

;

(b) when | z| < (e − 1)/3(1 + e) ≈ 0.15404,

dU0(M f (|z|), | f (0)|) < 1 = e

λU0(
1
e )

;

(c) when | z| < (1 − | f (0)|)/3(1 + | f (0)|),

dU0(M f (|z|), | f (0)|) <
1/| f (0)|

λU0(| f (0)|) .

P r o o f . By Theorem 2.5, M f (U1/3) ⊆ U0. Define a covering map F : U → U0 by

F(z) = exp

(
log(| f (0)|)1 + z

1 − z

)
.

Also, the conformal map ψ(z) = 3z sends U1/3 onto U . Note that F ◦ ψ : U1/3 → U0 is also a covering map.
Thus by [9, Theorem 10.5],

dU0(| f (0)|,M f (|z|)) ≤ dU0((F ◦ ψ)(0), (F ◦ ψ)(|z|))
= dU1/3(0, |z|) = dU (ψ(0), ψ(|z|))

= dU (0, 3|z|) = log
1 + 3|z|
1 − 3|z|

in U1/3. Part (a) and (b) are evident. For part (c), an upper bound for |z| is obtained by solving the inequality

log
1 + 3|z|
1 − 3|z| <

1/| f (0)|
λU0(| f (0)|) = log

(
1

| f (0)|
)

. �
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